All Pod Variants¶
Bazzite provides 7 pod variants for different workflows. All are standard OCI containers available at ghcr.io/atrawog/bazzite-ai-pod-*:stable.
Quick Reference¶
| Pod | Size | GPU | Use Case | Docker Command |
|---|---|---|---|---|
| base | ~2GB | No | Web dev, scripting | docker run ghcr.io/atrawog/bazzite-ai-pod-base:stable |
| nvidia | ~3GB | Yes | Custom CUDA setups | docker run --gpus all ghcr.io/atrawog/bazzite-ai-pod-nvidia:stable |
| nvidia-python | ~6GB | Yes | ML/AI with PyTorch | docker run --gpus all ghcr.io/atrawog/bazzite-ai-pod-nvidia-python:stable |
| jupyter | ~11GB | Yes | Interactive notebooks | docker run --gpus all -p 8888:8888 ghcr.io/atrawog/bazzite-ai-pod-jupyter:stable |
| devops | ~4GB | No | AWS, kubectl, Helm | docker run ghcr.io/atrawog/bazzite-ai-pod-devops:stable |
| playwright | ~5GB | Optional | Browser automation | docker run -p 5900:5900 ghcr.io/atrawog/bazzite-ai-pod-playwright:stable |
| githubrunner | ~3GB | No | CI/CD pipelines | docker run ghcr.io/atrawog/bazzite-ai-pod-githubrunner:stable |
Core Pods¶
pod-nvidia-python¶
ML/AI development environment with PyTorch and CUDA support.
- Size: ~6GB
- GPU: NVIDIA (CUDA 12.4)
- Best for: ML model training, deep learning research, PyTorch development
docker run -it --rm --gpus all -v $(pwd):/workspace \
ghcr.io/atrawog/bazzite-ai-pod-nvidia-python:stable
pod-jupyter¶
JupyterLab server for interactive data science and ML development.
- Size: ~11GB
- GPU: NVIDIA (CUDA 12.4)
- Port: 8888
- Best for: Data science, interactive ML, notebook-based workflows
docker run -it --rm --gpus all -p 8888:8888 -v $(pwd):/workspace \
ghcr.io/atrawog/bazzite-ai-pod-jupyter:stable
pod-devops¶
Cloud infrastructure tools - AWS, Google Cloud, Kubernetes, and more.
- Size: ~4GB
- GPU: None (CPU-only)
- Best for: Cloud infrastructure, Kubernetes operations, CI/CD pipelines
docker run -it --rm -v $(pwd):/workspace \
-v ~/.aws:/home/jovian/.aws:ro \
-v ~/.kube:/home/jovian/.kube:ro \
ghcr.io/atrawog/bazzite-ai-pod-devops:stable
pod-playwright¶
Browser automation with Playwright, Chrome, and VNC access.
- Size: ~5GB
- GPU: Optional
- Port: 5900 (VNC)
- Best for: Browser automation, E2E testing, web scraping
docker run -it --rm -p 5900:5900 -v $(pwd):/workspace \
ghcr.io/atrawog/bazzite-ai-pod-playwright:stable
Specialized Pods¶
pod-base¶
Foundation pod - Clean Fedora 43 with development essentials.
- Size: ~2GB
- GPU: None (CPU-only)
- Best for: Web development, scripting, testing, Kubernetes work without GPU
Includes:
- Build toolchain (gcc, make, cmake, ninja)
- Language runtimes (Python, Node.js, Go, Rust)
- VS Code, Docker CLI, Podman
- kubectl, Helm, Claude Code
- Modern shell tools (fzf, ripgrep, bat, eza)
pod-nvidia¶
GPU compute foundation - Adds CUDA toolkit for custom GPU setups.
- Size: ~3GB
- GPU: NVIDIA (CUDA 13.0)
- Best for: Custom GPU compute, CUDA development, building ML frameworks from source
Adds to base:
- CUDA Toolkit 13.0
- cuDNN (Deep Neural Network library)
- TensorRT (inference optimization)
pod-githubrunner¶
GitHub Actions runner - Self-hosted CI/CD pipeline execution.
- Size: ~3GB
- GPU: None (CPU-only)
- Best for: Self-hosted CI/CD, workflow testing, local GitHub Actions development
Adds to base:
- GitHub Actions runner agent
- Kubernetes tools for K8s-based CI
Pod Selection Guide¶
| Your Need | Use This Pod |
|---|---|
| ML/AI model training | nvidia-python |
| Interactive data science | jupyter |
| Cloud/K8s infrastructure | devops |
| Browser testing | playwright |
| CI/CD pipelines | githubrunner |
| Custom GPU work | nvidia |
| CPU-only development | base |
See Also¶
- Quick Start - Get running in minutes
- Deployment Guide - Docker, Kubernetes, HPC options
- Pod Architecture - Inheritance and build system